Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Usha K. Urs, ${ }^{\text {a }}$ M. S.
Dharmaprakash, ${ }^{\text {b }}$ S. A.
Shivashankar ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\mathbf{a} *}$
${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and ${ }^{\mathbf{b}}$ Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail:
ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.102$
Data-to-parameter ratio $=19.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(tert-butyl 3-oxobutanoato)zirconium(IV)

The structure of the title compound, $\left[\mathrm{Zr}\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3}\right)_{4}\right]$, an MOCVD precursor, has been determined. The zirconium coordination geometry is dodecahedral and the chelate rings are significantly non-planar. The Zr atom lies on a $\overline{4}$ axis, so the asymmetric unit contains only one ligand.

Comment

The structure of the title zirconium complex, (I), an MOCVD precursor, has been determined. The molecular fourfold inversion symmetry $(\overline{4})$ is retained in the crystal structure, with the Zr atom occupying a special position. The coordination geometry is dodecahedral (Hoard \& Silverton, 1963) and not a square antiprism, as in tetrakis(acetylacetonato)zirconium(IV) (Clegg, 1987; Silverton \& Hoard, 1963). The ligand has tert-butoxy as a substituent on one side and methyl on the other, as in the Fe complex, also an MOCVD precursor, reported by us previously (Urs et al., 2000). The ligand bite $\mathrm{O} \cdots \mathrm{O}$ distance is 2.703 (2) \AA. The six-membered chelate ring is significantly non-planar, the angle between the $\mathrm{Zr} 1 / \mathrm{O} 1 / \mathrm{O} 2$ and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3$ planes being $3.8(2)^{\circ}$ (Nardelli, 1995). The packing is essentially by van der Waals interactions. There are two intramolecular short contacts of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type involving the tert-butyl atoms C6 and C7, and the chelate ring atom O2, with C.. O distances of 2.999 (3) and 2.906 (4) A. and angles at H of 114.2 (2) and 116.6 (2) ${ }^{\circ}$, respectively.

(I)

Experimental

The title compound was synthesized by refluxing zirconium n-propoxide with tert-butyl 3 -oxobutanoate in dry benzene, under flowing dry nitrogen. $10 \mathrm{mmol}(2.31 \mathrm{~g})$ of zirconium n-propoxide was placed in a three-necked round-bottomed flask connected to the dry nitrogen gas line. $40 \mathrm{mmol}(6.12 \mathrm{~g})$ of tert-butyl 3 -oxobutanoate was added, using a pressure equalizer fitted to one of the necks. A reflux condenser fitted with calcium chloride guard tube was fitted to the third neck, to ensure that the system was moisture-free. The reaction mixture was refluxed for 3 h . The propanol-benzene mixture and the excess solvent were removed by distillation. The residue (4.42 g , 85%) was recrystallized from hot n-hexane.

Received 16 January 2003
Accepted 22 January 2003
Online 31 January 2003

Crystal data

$\left[\mathrm{Zr}\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{3}\right)_{4}\right]$
$M_{r}=719.96$
Tetragonal, $I 4_{1} / a$
$a=18.569$ (4) А
$c=10.818$ (3) \AA
$V=3730.2(16) \AA^{3}$
$Z=4$
$D_{x}=1.282 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 19762
reflections
$\theta=2.2-27.5^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.19 \times 0.13 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.84, T_{\text {max }}=0.98$
19762 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.102$
$S=1.00$
2111 reflections
106 parameters
.

2111 independent reflections
1491 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.122$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 24$
$k=-23 \rightarrow 22$
$l=-14 \rightarrow 13$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Zr} 1-\mathrm{O} 1$	$2.1008(16)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.417(3)$
$\mathrm{Zr} 1-\mathrm{O} 2$	$2.2786(16)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.283(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.357(3)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.234(3)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zr} 1-\mathrm{O} 2$	$71.36(6)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$124.8(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$122.3(2)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$115.2(2)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{Zr} 1$	$138.39(15)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.0(2)$
$\mathrm{O} 2-\mathrm{Zr} 1-\mathrm{O} 1-\mathrm{C} 3$	$-1.4(2)$	$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 2-\mathrm{C} 1$	$7.6(2)$
$\mathrm{Zr} 1-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$-2.6(4)$	$\mathrm{Zr} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$-9.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$2.7(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	$3.6(4)$

Symmetry codes: (i) $\frac{3}{4}-y, x-\frac{1}{4}, \frac{7}{4}-z$.

H atoms were positioned geometrically and allowed to ride on their respective parent atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST Program. UKU thanks the CSIR for a research associateship.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity and only the atoms of the asymmetric unit are labelled.

Figure 2
Packing of the molecules, viewed down the c axis.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Clegg, W. (1987). Acta Cryst. C43, 789-791.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hoard, J. L. \& Silverton, J. V. (1963). Inorg. Chem. 2, 235-243.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silverton, J. V. \& Hoard, J. L. (1963). Inorg. Chem. 2, 243-249.
Urs, U. K., Shalini, K., Shivashankar, S. A. \& Row, T. N. G. (2000). Acta Cryst. C56, e448-e449.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

